

1

Decorator Pattern Implementation Lab Task 1

Introduction & Concept

In this lab task we will learn how to implement the decorator pattern using C#.Net

• Decorator is a structural design pattern that allows us to extend the behavior of

objects by placing into a special wrapper class. It allows to attach additional

responsibilities to an object dynamically.

• Decorators provide a flexible alternative to subclassing for extending

functionality.

• The Decorator is also known as Wrapper. Both names for the same design

pattern can be used interchangeably.

• The composite pattern is a partitioning design pattern, it describes that the group

of objects are treated same way as a single instance of the same type of object.

• The concept is useful when you want to add some special functionality to a

specific object instead of the whole class. This pattern prefers object composition

over inheritance.

• The following UML diagram illustrates the structure of decorator pattern.

2

The Problem

Suppose you own a single-story house, and you decide to build a second floor on top of

it. Obviously, you may not want to change the architecture of the ground floor. But you

may want to change the design of the architecture for the newly added floor without

affecting the existing architecture.

Class Diagram

3

Implementation

1. Create a console application in visual studio and name it DecoratorApp.

2. Create a folder and name it BasicDecoratorImplementation

3. Create Component.CS file in this folder and write the following code in it:

 /// <summary>
 /// Decorator Base functionality
 /// </summary>
 public abstract class Component
 {
 public abstract void MakeHouse();
 }

The above created abstract class declares a single method MakeHouse (). The base
functionality that will be provided by the Concrete Component. The additional
functionality will be attached by the decorators.

In the next step we are going to provide the concrete implementation for the above

created abstract class Component.

 4. Create ConcreateComponent.cs file in this folder and write the following

code in it:

 /// <summary>
/// Implementation for Component

 /// </summary>
 public class ConcreteComponent : Component
 {
 public override void MakeHouse()
 {
 Console.WriteLine("The original house is complete and is
 closed for modification.");
 }
 }

4

This is the base functionality in decorator that works as a first floor in our example and
on top of it we will build another floor using decorators.

Next, we are going to create an abstraction for addition responsibilities to be attached
and make use of existing component. Here we will prefer object composition over
inheritance.

5. Create AbstractDecorator.cs file in this folder and write the following code

in it:

 /// <summary>
/// Abstraction for decorators

 /// </summary>
 public abstract class AbstractDecorator : Component
 {
 protected Component Component { get; set; }

 public void SetComponent(Component c)
 {
 Component = c;
 }

 public override void MakeHouse()
 {
 if(Component != null)
 {
 Component.MakeHouse(); //Delegating responsibility
 }
 }
 }

In above abstract decorator we defined the SetComponent() method. This will allow to

inject the objects that implement the Component abstract class. We also overridden the

MakeHouse() and execute the Component’s existing behavior.

Next, we are going to create concrete decorators.

6. Create AddFloorDecorator.cs file in this folder and write the following code

in it:

 /// <summary>
 /// Add Floor Concrete decorator
 /// </summary>
 public class AddFloorDecorator : AbstractDecorator

5

 {
 public override void MakeHouse()
 {
 base.MakeHouse();
 Console.WriteLine("***Add floor decorator start

 working***");
 AddFloor();
 Console.WriteLine("***Add floor decorator finished
 construction***\n");
 }

 public void AddFloor()
 {
 Console.WriteLine("Making an additional floor on to of the
 original");
 }
 }

We inherit form the AbstractDecorator and defined the AddFloor() method. This is the
additional responsibility that we are attaching in this concrete decorator. We also
overridden the base decorator MakeHouse(). In this method we executed the existing
base behavior base.MakeHouse() and after that we called the AddFloor() method.

Next, we are going to create another decorator the same way the AddFloorDecorator is
created.

7. Create PaintHouseDecorator.cs file in this folder and write the following

code in it:

 /// <summary>
 /// Paint House Concrete decorator
 /// </summary>
 public class PaintHouseDecorator : AbstractDecorator
 {
 public override void MakeHouse()
 {

 base.MakeHouse();
 Console.WriteLine("***Paiting house decorator start work
 Ing***");
 PaintHouse();
 Console.WriteLine("***Paiting house decorator finished
 Painting***\n");

 }

6

 public void PaintHouse()
 {
 Console.WriteLine("Now i am painting the house");
 }
 }

The above PaintHouseDecorator is same as AddFloorDecorator. It inherits from the

BaseDecorator and overrides its MakeHouse() and defines additional PaintHouse()

method. Notice the execution in the overridden MakeHouse(), once the house is built

the PaintHouse() is executed.

Next, we will create a client class that will show how to use the decorators in client

code.

8. Create DecoratorDemo.cs file in this folder and write the following code in it:

 public static class DecoratorDemo
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("DECORATOR PATTERN DEMO");
 Console.WriteLine("========================\n");

 //Add a new floor on top of other using decorator
 ConcreteComponent cc = new ConcreteComponent();
 AddFloorDecorator afd = new AddFloorDecorator();
 afd.SetComponent(cc);

 //Paint the house using another decorator
 PaintHouseDecorator phd = new PaintHouseDecorator();
 phd.SetComponent(afd);
 phd.MakeHouse();

 Console.ReadKey();
 }
 }

7

Program Output

Summary

The main purpose of the Decorator Pattern is to promote the OCP (Open-Closed
Principle) concept. That means, we can add new functionality without altering the
existing functionalities.

In this lab task, a little longer than usual, we have learned what is a decorator pattern
and how to implement it using C#. We have also learned how this pattern prefers object
composition over inheritance. We wrapped the object into concrete decorators to
attach new functionality without altering the existing one made accessible through the
object composition in the abstract base decorator.

Goodbye, wish you all the best and see you in next lab task!

